Dissipationless Transport in Low-Density Bilayer Systems
نویسندگان
چکیده
منابع مشابه
Dissipationless transport in low-density bilayer systems
In a bilayer electronic system the layer index may be viewed as the z component of an isospin- 1 / 2. An XY isospin-ordered ferromagnetic phase was observed in quantum Hall systems and is predicted to exist at zero magnetic field at low density. This phase is a superfluid for opposite currents in the two layers. At B = 0 the system is gapless but superfluidity is not destroyed by weak disorder....
متن کاملToward dissipationless spin transport in semiconductors
Spin-based electronics promises a radical alternative to chargebased electronics, namely the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. In this paper we review three potential means of dissipationless spin transport in semiconductors with and without spin-orbit coupling: the use of spin currents, propagating modes, and orbita...
متن کاملLow-density ferromagnetism in biased bilayer graphene.
We compute the phase diagram of a biased graphene bilayer. The existence of a ferromagnetic phase is discussed with respect to both carrier density and temperature. We find that the ferromagnetic transition is first-order, lowering the value of U relatively to the usual Stoner criterion. We show that in the ferromagnetic phase the two planes have unequal magnetization and that the electronic de...
متن کاملInterlayer transport in bilayer quantum Hall systems.
Bilayer quantum Hall systems have a broken symmetry ground state at a filling factor which can be viewed either as an excitonic superfluid or as a pseudospin ferromagnet. We present a theory of interlayer transport in quantum Hall bilayers that highlights remarkable similarities and critical differences between transport in Josephson junction and ferromagnetic metal spin-transfer devices. Our t...
متن کاملLow-lying Excitations in Superconducting Bilayer Systems
The ground and first excited state of two superconducting layers in interaction are studied considering two different coupling terms, one represented by the standard Josephson interaction, and one new, which is a superexchange pairing force between bilayer pairs. It is shown that a moderate-to strong Josephson interaction produces a low-lying collective state, pictured as an out-of-phase oscill...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2000
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.84.139